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1.0 Introduction 
Pattern recognition/classification of handwritten digits were performed on a random sample of3000 digits. 
Each class was trained with 200 digits and tested with 100 digits. Each digit was normalized to a 32x32 
matrix representation of the digit. 

Four methods were used to classify each digit: Directional Vectors, Profiles, Curvatures, and Profile­
Curvatures. In addition to each method used, a wavelet transform was also performed on the digits to see if 
any better results could be obtained. 

The goal of this project was to investigate less common methods that might be useful in pattern recognition 
of digits while keeping the generality of these algorithms. It was not the intent of this project to base 
methods off certain digits and combine them together to create an algorithm used for classification; each 
method was used on its own as a classifier. 

In each method the classification is done using the Mahalanobis distance function. Either the covariance's 
are used or a number of eigenvectors (based from the largest eigenvalues) are used. Each method may use 
a different number of eigenvectors. 

2.0 Direction Vector Classification 
There were two types of direction vectors used on the contours of the digit image. The 4 point directional 
vector and the 8 point directional vector. A 4 point directional vector uses numbers 1, 2, 3, and 4 to 
represent the direction of the last pixel with respect to the current one. { 1 represent an angle of o· or 180', 
2 = (45', 225'), 3 = (90', 270'), and 4 = (135', 315')}. An 8 point directional vector uses the numbers 1, 2, 
.. , 8 to represent the direction (l = o·, 2 = 45', 3 = 90", 4 = 135', 5 = 180', 6 = 225', 
7 = 270', 8 = 315'). 

The image of the digit was cut into either 4 or 16 groups and a histogram of the values were used for each 
group. Both covariance matrices and eigenvectors were used to classify the image. A wavelet was also 
used to see if better results could be obtained from the transform. The following results are read as% 
correct/% reject. 

• 4 point directional vector with 4 groups 
• covariance: 79.2/26.3 
• eigenvectors: 73.9/0.5 

• 4 point directional vector with 16 groups 
• covariance: 86.2/3.8 
• eigenvector: 94.5/5.0 and 92.7/0.9 

• 8 point directional vector with 4 groups 
• covariance: 82.0/3.7 
• wavelet/covariance: 72.0/18.0 

• 8 point directional vector with 16 groups 
• eigenvectors: 95.1/8.4 and 93.2/1.7 

As the results show: 
• The wavelet transform reduces the chance of correct classification while increasing the rejection 

percentage. 
• The eigenvectors do a better job classifying digits than the covariance matrix. 
• The 8 point directional vector classifier has a slightly higher classification percentage then the 4 point 

direction vector; however, the rejection rates are also increased. 



3.0 Profiles 
4 different profiles were compiled of each image: a left profile is the column value of the first 'on' pixel in 
each row, a right profile is the column value of the last 'on' pixel in each row, a top profile is the row value 
of the first 'on' pixel in each column, and a bottom profile is the row value of the last 'on' pixel in each 
column. 

The widths of each right/left or top/bottom profiles were also used to classify digits. After the profiles are 
found, wavelet transforms of the data was computed. The following results are read% correct/% reject 
where R - right profile, L - left profile, T - top profile, B - bottom profile, and W - width. 

• Covariance matrix 
• R, L, and W: 81.6/0.2 
• T, B, and W: 65.0/0.8 

• eigenvectors: 
• R, L, and W: 80.8/0.1 
• R, L, T, B, and Ws: 83.4/2.7 

These results are not as useful as I had originally thought they would be. From previous papers, it shows 
the use of profiles without wavelet transforms are manly used as a second set of a dual classification 
algorithm using fuzzy logic. Here, only distance classifications were used to keep the generality of the 
algorithms. 

4.0 Curvatures 
Curvature matrices seemed the same as directional vectors except being more lenient on local noise to the 
image. A curvature was computed for each point by calculating the curve of two vectors. One vector is 
made from the current point and 3 points back and the other vector is made from the current point and 3 
points ahead. 

Curvature matrices seemed like good candidates for wavelet transforms, but only 65.0 percent of the digits 
were correctly classified. Without the transform, classification results didn't do much better. 

5.0 Profile-Curvature 
The profiles of the digit were compiled of the curvature of the image to get a right/left curve profile of the 
digit. The classification was obtained from both a wavelet transform and the straight eigenvectors. Using 
eigenvectors or covariance matrices didn't help in the distance function to classify digits. The results were 
58.9% correct with a rejection rate of .3%. 

Wavelet transforms of the profiles gave strange classification results. They seemed to classify most all the 
digits as either a zero or a six. Similar results were found when using wavelets in other classification 
methods. 

6.0 Conclusion 
Directional vectors were, by far, the best classifier used in this study. The difference between 4 point 
directional vectors and 8 point directional vectors was negligible. The results of the remaining 
classification methods do not justify further study in these areas. Wavelet transforms on these methods 
only made classification rates lower while increasing the rejection rates. Similar methods of directional 
vectors (curvature) that were supposed to remove local noise did not; errors turned out higher. Profile 
classification results showed that profiles could only be useful in dual classification algorithms. Many of 
these methods could probably be improved by adding syntactical measures, but this would decrease the 
generality of the method. 


